
Multi-Threshold Byzantine Fault Tolerance

Atsuk i  Momose  * †, L ing Ren‡

Intelligent Systems Laboratory, SECOM CO., LTD.

Nagoya University†

University of  Illinois at Urbana-Champaign‡

1

© 2021 SECOM CO., LTD.



Byzantine faul t  tolerance (BFT)

Class of  distributed algorithm that tolerates arbitrarily deviating faults.

2

© 2021 SECOM CO., LTD.



Byzantine faul t  tolerance (BFT)

Class of  distributed algorithm that tolerates arbitrarily deviating faults.

At most f nodes are 

malicious and behave 

arbitrarily

→ Byzantine fault3

© 2021 SECOM CO., LTD.



4

Classic BFT design

Classic BFT design first selects its timing assumptions from below.

Model Fault- tolerace Protocol

Synchrony.  Every message is 

delivered within Δ
f <  n/2 or f <  n

Sync HotStuff, 

Dolev-Strong

Asynchrony.  No bound on 

message delay

f <  n/3

HoneyBadgerBFT, 

BEAT, Dumbo

Partial-synchrony.

Synchronous after GST

PBFT,

HotStuff

to lerate 

asynchrony

tolerate 

more  faul ts

© 2021 SECOM CO., LTD.



5

Classic BFT design

Classic BFT design first selects its timing assumptions from below.

Model Fault- tolerace Protocol

Synchrony.  Every message is 

delivered within Δ
f <  n/2 or f <  n

Sync HotStuff, 

Dolev-Strong

Asynchrony.  No bound on 

message delay

f <  n/3

HoneyBadgerBFT, 

BEAT, Dumbo

Partial-synchrony.

Synchronous after GST

PBFT,

HotStuff

to lerate 

more  faul ts

to lerate 

asynchrony

© 2021 SECOM CO., LTD.



Classic BFT design

Classic BFT design first selects its timing assumptions f rom below.

f <  n/3

6

Asynchrony.  No bound 

on message delay

Partial-synchrony.

Synchronous after GST

HoneyBadgerBFT, 

BEAT, Dumbo

PBFT,

HotStuff

Model Fault- tolerace Protocol

Synchrony.  Every message is 

delivered within Δ
f <  n/2 or f <  n

Sync HotStuff, 

Dolev-Strong

to lerate 

more  faul ts

to lerate 

asynchrony

© 2021 SECOM CO., LTD.



7

How synchrony is useful?

• If the network synchrony helps tolerate more faults, what if asynchronous 

or partial synchronous protocols run in a synchronous network?

• Can we tolerate ⌊n/3⌋ −  1 faults under asynchrony and ≥  n/3 under 

synchrony?

© 2021 SECOM CO., LTD.



8

Dual threshold BFT (Blum et al. ̶ TCC’19, Crypto’20, Asiacrypt’21)

• A protocol simultaneously tolerates fs faults under synchrony and fa faults 

under asynchrony.

• Classic asynchronous protocols → fs =  fa =  f =  ⌊n/3⌋ −  1

• Dual threshold BFT is possible ⇔ 2fa +  fs <  n

• 0 <  fa <  n/3 (i.e., tolerate asynchrony) and fs ≥  n/3 is possible (Good news)

• If fa =  ⌊n/3⌋ −  1, then fs =  ⌊n/3⌋ −  1 (Bad news)

© 2021 SECOM CO., LTD.



9

Multi-threshold BFT (this work)

• A protocol simultaneously tolerates (βs, γs) faults under synchrony and

(βa, γa) faults under asynchrony (or partial-synchrony).

→ Achieve sa fe ty  with βs (or βa) faults, and l iveness with s (or a) faults.

• Safety - “nothing bad happens” (e.g., nodes do not decide differently)

• Liveness - “something happens” (e.g., everyone decides eventually)

• Blum et al’s bound 2fa +  fs <  n can be generalized to 2βa +  γs <  n

• The trade-off  is in βa ↔ γs but not in βa ↔ βs

• βs ≥  n/3 and βa =  γa =  γs =  ⌊n/3⌋ −  1 is possible (Main resul t )

→ control the network, or corrupt more to attack.

© 2021 SECOM CO., LTD.



10

RBC, SMR

Reliable broadcast  (RBC).

• A designated sender node broadcasts a value.

• A building block of  many distributed cryptographic protocols, e.g., SMR, DKG.

State machine repl icat ion (SMR).

• The most practical formulation of  consensus problem.

• The underlying problem of blockchain.

• Provide clients with an abstraction of  a single non-faulty server.

© 2021 SECOM CO., LTD.



State machine replication (SMR)

• Safety. Honest nodes do not output different requests at the same log 

position.

• Liveness. Every request is eventually included in a log.  

Clients can verify the correctness of a log ̶ public verifiability

𝖫𝖮𝖦  =  [tx1, tx2, tx3 . . ]

Nodes agree on a growing log of  requests f rom clients.

txa, txb, txc . .

cl ients

11

© 2021 SECOM CO., LTD.



Tight faul t  tolerance

Problem Tight  fau l t  to lerance

RBC

βa =  n −  2γs −  1

βs =  n −  1

γa =  min{βa, γs}

SMR

βa =  n −  2γs −  1

βs =  n −  γs −  1

γa =  min{βa, γs}

2γs +  βa <  n

The generalized 

Blum et al’s bound

β : safety

: liveness

12

© 2021 SECOM CO., LTD.



Tight faul t  tolerance

Problem Tight  fau l t  to lerance

RBC

βa =  n −  2γs −  1

βs =  n −  1

γa =  min{βa, γs}

SMR

βa =  n −  2γs −  1

βs =  n −  γs −  1

γa =  min{βa, γs}

tolerate arbitrary high fault 

for  synchronous safety

β : sa fe ty

: l iveness

13

© 2021 SECOM CO., LTD.



Tight faul t  tolerance

Problem Tight  fau l t  to lerance

RBC

βa =  n −  2γs −  1

βs =  n −  1

γa =  min{βa, γs}

SMR

βa =  n −  2γs −  1

βs =  n −  γs −  1

γa =  min{βa, γs}

γs =  βs =  f ⇒ f <  n/2

(Schneider’s bound)

βs +  γs <  n

another bound due to 

public verifiability

βs <  2n/3 while

βa =  γa =  γs <  n/3 is possible

β : sa fe ty

: l iveness

14

© 2021 SECOM CO., LTD.



A generic upgrading f ramework

Existing asynchronous or partially synchronous protocol can be upgraded to 

achieve the optimal synchronous safety tolerance.

Any asynchronous or partially synchronous 

BFT SMR protocol with βs =  γs =  βa =  γa <  n/3

A BFT SMR protocol with

γs =  βa =  γa <  n/3 and βs <  2n/3

• Asynchronous protocol

→ HoneyBadgerBFT, Dumbo.

• Partially synchronous protocol

→ PBFT, HotStuff

15

© 2021 SECOM CO., LTD.



A generic upgrading f ramework

A synchronous fallback process check if safety violation happens in 

the original protocol.

original  p ro toco l

𝖫𝖮𝖦  =  [tx1, tx2, tx3 . . ]

If detect safety violation, stop committing.

Otherwise, commit 𝖫𝖮𝖦

synchronous  fa l lback process

Synchrony + ≥  n/3 fau l t

→ The fallback process can 

detect safety violation.

16

Asynchrony  + <  n/3 fau l t

→ The original protocol is 

already safe.

© 2021 SECOM CO., LTD.



Fallback process

“v i r tual  sender”

txk

txk

txk

The fallback process is similar to a synchronous broadcast protocol.

Commit 𝖫𝖮𝖦  =  [ . . , txk, . . ]

original  pro toco l

Broadcast  pro toco l  

f o r  height  k

17

© 2021 SECOM CO., LTD.



Fallback process

“v i r tual  sender”

txk

txk

txk

The fallback process is similar to a synchronous broadcast protocol.

Commit 𝖫𝖮𝖦  =  [ . . , txk, . . ] & 𝖫𝖮𝖦′ =  [ . . , txk′, . . ] (txk ≠  txk′)

original  pro toco l  → safety violation

Broadcast  pro toco l  

f o r  height  k

18

© 2021 SECOM CO., LTD.



Fallback process

txk′

txk

“v i r tual  sender”

txk

sender’s equivocat ion

Broadcast  pro toco l  

f o r  height  k

The fallback process is similar to a synchronous broadcast protocol.

Commit 𝖫𝖮𝖦  =  [ . . , txk, . . ] & 𝖫𝖮𝖦′ =  [ . . , txk′, . . ] (txk ≠  txk′)

original  pro toco l  → safety violation

19

© 2021 SECOM CO., LTD.



Fallback process ̶ for height k

We adopt the Xiang et al.’s method [PODC’21] for  detecting equivocation.

1. Multi-cast (𝗏𝗈𝗍𝖾, b, k)

The original protocol 

commits at height k

2. On receiving 2n/3 (𝗏𝗈𝗍𝖾, b, k), 

forward them to all.

3. Wait for  Δ, and check that 

no other 2n/3(𝗏𝗈𝗍𝖾, b′, k) exists.

4. Multi-cast (𝖼𝗈𝗆𝗆𝗂𝗍, b, k),

5. On receiving 2n/3 (𝖼𝗈𝗆𝗆𝗂𝗍, b, 

k), commit .

PV (publicly verifiable) proof that original protocol commits

PV proof of  committing

20

© 2021 SECOM CO., LTD.



Latency.

• Latency of  the original protocol + Δ  + 2 rounds.

• Not responsive, i.e., depends on Δ, which is inherent if βs ≥  n/3 is desired.

Throughput .

• O(n2) communication overhead → original protocols usually cost Ω(n2)

• Δ-waiting step does not hurt the throughput.

Overhead (in theory)

Original protocol commits
21

Δ  + 2 rounds
Final commit

bk bkbk+1 bk+1

© 2021 SECOM CO., LTD.



We show a protocol (combining Sync HotStuff and PBFT) that allows

any fault thresholds in the optimal trade-off  in the partial synchrony model.

Flexible threshold parameters.

Problem Tight  fau l t  to lerance

SMR

βa =  n −  2γs −  1

βs =  n −  γs −  1

γa =  min{βa, γs}

Safety  favor ing.

γs =  γa <  n/4, βa <  n/2, βs <  
3n/4

High avai labi l i ty 

under  

synchrony.

γs <  9 n/20, βs <  1 1 n/20, βa =  βa <  
n/10

β : sa fe ty

: l iveness

22

© 2021 SECOM CO., LTD.



23

Summary

• Classic BFT: one fault threshold, and one timing 

assumption.

→ trade-off in timing assumption and fault tolerance.

• Mult i - threshold BFT: separate faul t  thresholds for

1. different t iming assumptions ̶  synchrony and asynchrony

2. security properties ̶ safety and liveness.

• Higher synchronous safety tolerance βs <  2 n/3 is 

possible with βa =  γa =  γs =  

⌊n/3⌋ − 1.

© 2021 SECOM CO., LTD.


	スライド 1: Multi-Threshold Byzantine Fault Tolerance
	スライド 2: Byzantine fault tolerance (BFT)
	スライド 3: Byzantine fault tolerance (BFT)
	スライド 4: Classic BFT design
	スライド 5: Classic BFT design
	スライド 6: Classic BFT design
	スライド 7: How synchrony is useful?
	スライド 8: Dual threshold BFT (Blum et al. ̶ TCC’19, Crypto’20, Asiacrypt’21)
	スライド 9: Multi-threshold BFT (this work)
	スライド 10: RBC, SMR
	スライド 11: State machine replication (SMR)
	スライド 12: Tight fault tolerance
	スライド 13: Tight fault tolerance
	スライド 14: Tight fault tolerance
	スライド 15: A generic upgrading framework
	スライド 16: A generic upgrading framework
	スライド 17: Fallback process
	スライド 18: Fallback process
	スライド 19: Fallback process
	スライド 20: Fallback process ̶ for height k
	スライド 21: Overhead (in theory)
	スライド 22: Flexible threshold parameters.
	スライド 23: Summary

