Multi-Threshold Byzantine Fault Tolerance

Atsukli Momose * 1, Ling Rent

Intelligent Systems Laboratory, SECOM CO., LTD.
Nagoya Universityt

University of lllinois at Urbana-Champaigni



Byzantine fault tolerance (BFT)

Class of distributed algorithm that tolerates arbitrarily deviating faults.

]

]



Byzantine fault tolerance (BFT)

Class of distributed algorithm that tolerates arbitrarily deviating faults.

At most fnodes are
malicious and behave

arbitrarily

© 2021 SECOM CO., LTD.
3 — Byzantine fault



Classic BFT design

Classic BF T design first selects its timing assumptions from below.

Fault-tolerace Protocol
Synchrony. Every message Is Sync HotStuff, tolerate
. L f<n/2orf<n
delivered within A Dolev-Strong more faults
Asynchrony. No bound on HoneyBadgerBFT,
message delay BEAT, Dumbo
tolerate
asynchrony

Partial-synchrony. PBFT,
Synchronous after GST HotStuff

© 2021 SECOM CO., LTD.
4



Classic BFT design

Classic BF T design first selects its timing assumptions from below.

Model Fault-tolerace Protocol
Synchrony. Every message Is Sync HotStuff, tolerate
. L f<n/2orf<n
delivered within A Dolev-Strong more faults
Asynchrony. No bound on HoneyBadgerBFT,
message delay BEAT, Dumbo
tolerate
asynchrony
Partial-synchrony. PBFT,
Synchronous after GST HotStuff

© 2021 SECOM CO., LTD.
5



Classic BFT design

Classic BFT design first selects its timing assumptions from below.

Fault-tolerace Protocol
Synchrony. Every message is Sync HotStuff, tolerate
. L f<n/2orf<n
delivered within A Dolev-Strong more faults

Asynchrony. No bound HoneyBadgerBFT,

on message delay BEAT, Dumbo ol t
olerate

asynchrony

Partial-synchrony. PBFT,
Synchronous after GST HotStuff

© 2021 SECOM CO., LTD.
6



How synchrony is useful?

* |f the network synchrony helps tolerate more faults, what If asynchronous
or partial synchronous protocols run in a synchronous network?

* Can we tolerate [n/3] - 1 faults under asynchrony and = n/3under

synchrony?



Dual threshold BFT (Blum et al.—Tcc’19, Crypto’20, Asiacrypt'21)

* A protocol simultaneously tolerates f. faults under synchrony and f, faults

under asynchrony.
* Classic asynchronous protocols —» f,=f,=f=|n/3| -1

* Dual threshold BFT Is possible & 2f,+ f. < n

* 0<fy<n/3(le., tolerate asynchrony) and f,= n/3 Is possible (Good news)

e Iff,=1|n/3]-1,then f.=|n/3]-1 (Bad news)



Multi-threshold BF T (this work)

* A protocol simultaneously tolerates (B, V.) faults under synchrony and
(B, V,) faults under asynchrony (or partial-synchrony).

— Achieve safety with G, (or B,) faults, and liveness with . (or ) faults.

e Safety - "nothing bad happens” (e.g., nodes do not decide differently)

* Liveness - "something happens” (e.g., everyone decides eventually)

* Blum et al’'s bound 2f, + f, < n can be generalized to 26,+ y.< n

* The trade-off isin B, « y, but not in B, & f3;

* B.=2n/3 and B,=V,=V;=|[n/3]-1 Is possible (Main result)

— control the network, or corrupt more to attack.

9



RBC, SMR

Reliable broadcast (RBC).

* A designated sender node broadcasts a value.

* A building block of many distributed cryptographic protocols, e.g., SMR, DKG.

State machine replication (SMR).
* The most practical formulation of consensus problem.
* The underlying problem of blockchain.

°* Provide clients with an abstraction of a single non-faulty server.

10



State machine replication (SMR)

Nodes agree on a growing log of requests from clients.

e Safety. Honest nodes do not output different requests at the same log

clients LOG = tXl,tXZ,tX3
position.

* Liveness. Every request is eventually included in a log.

Clients can verify the correctness of a log—public verifiability

11



B : safety

Tight fault tolerance liveness

Problem

Tight fault tolerance

25+ Ba< N
The generalized
Blum et al's bound

© 2021 SECOM CO., LTD.
12



| B : safety
Tight fault tolerance liveness

Problem Tight fault tolerance

tolerate arbitrary high fault
for synchronous safety

© 2021 SECOM CO., LTD.
13



| B : safety
Tight fault tolerance liveness

Problem Tight fault tolerance

Ve=Bs=Ff = f<n/2
(Schneider’'s bound)

\

Bs+ Vs<n
another bound due to
public verifiability

Bs < 2n/3 while

B,= V.= Vs< nN/3Is possible

© 2021 SECOM CO., LTD.
14



A generic upgrading framework

Existing asynchronous or partially synchronous protocol can be upgraded to
achieve the optimal synchronous safety tolerance.

Any asynchronous or partially synchronous

BFT SMR protocol with B.= V.= B,= y.< n/3 \
* Partially synchronous protocol

A BFT SMR protocol with — PBFT, HotStuff

* Asynchronous protocol
— HoneyBadgerBFT, Dumbo.

Vs = ﬁa: Ya< Nn/3 and ﬁs< 2n/3

© 2021 SECOM CO., LTD.
15



A generic upgrading framework

A synchronous fallback process check if safety violation happens in
the original protocol.

. Synchrony + = n/3fault
original protocol
— The fallback process can

detect safety violation.

LOG = [tXl,tXZ,tX3. ]

Asynchrony + < n/3fault
synchronous fallback process y _ .y / _
— The original protocol Is

already safe.

If detect safety violation, stop committing.
Otherwise, commit LOG

© 2021 SECOM CO., LTD.
16



Fallback process

The fallback process is similar to a synchronous broadcast protocol.

Commit LOG = [..,tX,..]

original protocol

Broadcast protocol
for height k

]

“virtual sender”
th

-
—



Fallback process

The fallback process is similar to a synchronous broadcast protocol.

Commit LOG = [..,tX,..] & LOG = [..,tx..] (tx # tx,)

original protocol — safety violation
E - )
X L

Broadcast protocol
for height k

]

“virtual sender”
th



Fallback process

The fallback process is similar to a synchronous broadcast protocol.

Commit LOG = [..,tX,..] & LOG = [..,tx..] (tx # tx,)

original protocol — safety violation
E - )
X L

Broadcast protocol
for height k

]

“virtual sender”
th

sender’'s equivocation
© 2021 SECOI\/I CO., LTD.



Fallback process—for height &

We adopt the Xiang et al.’'s method [PODC’21] for detecting equivocation.

The original protocol PV proof of committing
commits  at height k 3. Wait for A, and check that o \
| 5. On receiving 2n/3 (commit, b,
l no other 2n/3(vote, b’, k) exists.
k), commit .
—

- 4. Multi-cast (commit, b, k),

1. Multi-cast (vote,b, k) 2. On receiving 2n/3 (vote, b, k), ( )

forward them to all. \

PV (publicly verifiable) proof that original protocol commits

© 2021 SECOM CO., LTD.
20



Overhead (in theory)

Latency.
* Latency of the original protocol + A + 2 rounds.

°* Not responsive, l.e., depends on A, which is inherent if 5. = n/3 Is desired.

Throughput.
* O(n4) communication overhead — original protocols usually cost Q(n?)

* A-waliting step does not hurt the throughput.
bk bk+1 bk bk+1

. . A + 2 rounds . .
Original protocol commits © 2021 SECOM CO., LTD. Final commit

21



| B : safety
Flexible threshold parameters. liveness

We show a protocol (combining Sync HotStuff and PBFT) that allows
any fault thresholds in the optimal trade-off in the partial synchrony model.

Problem Tight fault tolerance
Safety favoring.

VS: VCl< n/4aﬁa< n/Z’ﬁS<
3n/4

High availability

under
synchrony.

© 2021 SECOM CO., LTD. V.< 9n/20, ,BS < 11n/20, ,Ba = ,Ba <
22 n/10



Summary

* Classic BFT: one fault threshold, and one timing
assumption.

— trade-off in timing assumption and fault tolerance.

* Multi-threshold BFT: separate fault thresholds for
1. different timing assumptions—synchrony and asynchrony
2. security properties—safety and liveness.

°* Higher synchronous safety tolerance 5, < 2n/3 is
possible with G, =y, =V, =
In/3] - 1.

23



	スライド 1: Multi-Threshold Byzantine Fault Tolerance
	スライド 2: Byzantine fault tolerance (BFT)
	スライド 3: Byzantine fault tolerance (BFT)
	スライド 4: Classic BFT design
	スライド 5: Classic BFT design
	スライド 6: Classic BFT design
	スライド 7: How synchrony is useful?
	スライド 8: Dual threshold BFT (Blum et al. ̶ TCC’19, Crypto’20, Asiacrypt’21)
	スライド 9: Multi-threshold BFT (this work)
	スライド 10: RBC, SMR
	スライド 11: State machine replication (SMR)
	スライド 12: Tight fault tolerance
	スライド 13: Tight fault tolerance
	スライド 14: Tight fault tolerance
	スライド 15: A generic upgrading framework
	スライド 16: A generic upgrading framework
	スライド 17: Fallback process
	スライド 18: Fallback process
	スライド 19: Fallback process
	スライド 20: Fallback process ̶ for height k
	スライド 21: Overhead (in theory)
	スライド 22: Flexible threshold parameters.
	スライド 23: Summary

