Optimal Communication Complexity of Authenticated Byzantine Agreement

- Atsuki Momose * +, Ling Ren‡
 - Nagoya University
- Intelligent Systems Laboratory, SECOM CO., LTD.⁺
 - University of Illinois at Urbana-Champaign[‡]

Byzantine Agreement (BA)

A set of parties $\{r_1, \ldots, r_n\}$ have input values $\{x_1, \ldots, x_n\}$, and agree on a single output

- At most f parties are faulty and behave arbitrarily-Byzantine fault.
- Consistency. Honest parties do not output different values.
- Termination. Every honest party eventually outputs a value.
- Validity. If every honest party has the same input value, every honest party outputs the value y = b-Unanimity.

Byzantine Agreement (BA)

Unauthenticated model.

- No cryptography, i.e., information-theoretic security.
- f < n/3 is the best possible.

Authenticated model.

- Assume cryptography, e.g., digital signature with PKI.
- f < n/2 is the best possible.

Communication Complexity

The maximum amount of bits transferred by all honest parties combined across all executions—worst-case communication cost.

- All parties multicast O(1) messages, i.e., all-to-all communication $\rightarrow O(n^2)$ communication
- All-to-all communication with O(n) messages (e.g., a quorum of votes) $\rightarrow O(n^3)$ communication

Communication Complexity of BA

Model	Fault-tolerace	Lower Bound	Upper Bound
unauthenticated	<i>f</i> < <i>n</i> /3	Ω(n²) [Dolev-Resichuk]	$O(n^2)$ [Berman et al.]
authenticated (PKI)	<i>f</i> < <i>n</i> /2		<i>O</i> (<i>n</i> ³) [Dolev-Strong]

Communication Complexity of BA

Model	Fault-tolerace	Lower Bound	Upper Bound
unauthenticated	f < n/3	$\Omega(n^2)$ [Dolev-Resichuk]	$O(n^2)$ [Berman et al.]
authenticated (PKI)	f < n/2		O(n ³) [Dolev-Strong]
authenticated (trusted setup)	f < n/2		$O(n^2)$ this work
authenticated (PKI)	$f < (1/2 - \varepsilon)n$		$O(n^2)$ this work

> 0 : any constant

Other Assumptions

Lockstep synchrony model.

- Every party runs at the same clock speed \rightarrow a clock step is called round
- All message sent by honest parties are delivered by the next round Adaptive corruption.
- An adversary can corrupt parties anytime in the protocol execution

Outline

- 1. Achieving BA from Graded Agreement (GA)
- Berman et al's protocol is a problem reduction from BA to GA.

- 2. Solving GA for $f \ge n/3$
- Solution 1: GA with f < n/2 and trusted setup.
- Solution 2: GA with $f \leq (1/2 \varepsilon)n$ and PKI.

Outline

- 1. Achieving BA from Graded Agreement (GA)
- Berman et al's protocol is a problem reduction from BA to GA.

- 2. Solving GA for $f \ge n/3$
- Solution 1: GA with f < n/2 and trusted setup.
- Solution 2: GA with $f \leq (1/2 \varepsilon)n$ and PKI.

© 2021 SECOM CO., LTD.

One of two halves preserves the 1/3 fault fraction \rightarrow "correct" BA exec.

© 2021 SECOM CO., LTD.

One of two halves preserves the 1/3 fault fraction \rightarrow "correct" BA exec.

© 2021 SECOM CO., LTD.

faulty party "correct" BA

The other one might be "incorrect"

The tailored Universal Exchange pre-process (for f < n/3) helps parties ignore the incorrect BA and follow the correct BA.

What the Universal Exchange achieves is the well-known problem called Graded Agreement.

Graded Agreement (GA)

A set of parties $\{r_1, \ldots, r_n\}$ have input values $\{x_1, \ldots, x_n\}$, and each party outputs a pair (y,g) of value and a grade bit $g \in \{0,1\}$

- Consistency. If an honest party outputs (y,1), every honest party outputs (y, *)
- Validity. If every honest party has the same input value $x_i, \dots, x_i = b$, every honest party outputs (b,1)
- Termination. Every honest party eventually outputs a pair.

Idea 1: An agreed upon value will not be changed.

If all honest parties already agree on a value at the beginning of each step, they do not change the value in the step.

Idea 1: An agreed upon value will not be changed.

If all honest parties already agree on a value at the beginning of each step, they do not change the value in the step.

Everyone outputs GA(P) = (b,1)

Validity

If all honest parties input the same value, they all output the value.

Input $\rightarrow GA(P)$

\rightarrow Output

Idea 2: The "correct" step drives agreement

All honest parties agree on a value at the end of the "correct" step.

Case 1: Someone outputs a value with grade 1 in GA.

puts) Everyone outputs $BA(P_1) = b$

Idea 2: The "correct" step drives agreement

All honest parties agree on a value at the end of the "correct" step.

Case 2: No one outputs grade 1 in GA.

Idea 2: The "correct" step drives agreement

All honest parties agree on a value at the end of the "correct" step.

Case 2: No one outputs grade 1 in GA.

© 2021 SECOM CO., LTD.

Consistency (case 1: step 1 is correct)

The "correct" first step drives agreement, and the second step does not change the agreed upon value.

Step 1 is "correct"

Step 2: Everyone outputs the

Consistency (case 2: step 2 is correct)

All honest parties agree on a value following the "correct" second step.

Step 2: Everyone agrees on a value

Step 2 is "correct"

Communication Complexity

If the GA protocol costs $O(n^2)$ communication, the total communication of the BA protocol will be $O(n^2)$

 2^k partitions of O(1) parties

$$(\frac{1}{2})^2$$
) = $O(n^2)$

recursion has 2ⁱGAs Depth with $O((\frac{n}{2^i})^2)$ communication

Outline

- 1. Achieving BA from GA
- Berman et al's protocol is a problem reduction from BA to GA.

- 2. Solving GA for $f \ge n/3$
- Solution 1: GA with f < n/2 and trusted setup.
- Solution 2: GA with $f \leq (1/2 \varepsilon)n$ and PKI.

Warmup: GA with f < n/2

2. Forward $C^1(b)$

1. Send the input3. If no C^1 to all as (vote1, b)send (vote2)

3. If no $C^1(b')$ for $b' \neq b$, send (vote2, b) to all

$$C^{1}(b)$$
: $n - f$ (vote1, b)
 $C^{2}(b)$: $n - f$ (vote2, b)

4. Forward $C^2(b)$

If it receives $C^2(b)$ output (1) in round $3 \Rightarrow g \leftarrow 1$ (2) in round $4 \Rightarrow g \leftarrow 0$

Core idea: Eliminate conflicting majority vote2

Two different majority vote2 $C^{2}(b)$ and $C^{2}(b')$ cannot be collected.

Consistency

Everyone receives $C^2(b)$ \Rightarrow everyone outputs (*b*,*)

The communication complexity is $\Omega(n^3)$

Everyone forwarding $n - f = \Omega(n)$ vote2 costs $\Omega(n^3)$ communication

© 2021 SECOM CO., LTD.

Solution 1: Combining a set of votes

Combining $C^{1}(b)$ into a single signature using (n - f, n)-threshold signature

strong trusted key setup assumption

Solution 2: Expander

 (n, α, β) -expander. $(0 < \alpha, \beta < 1)$

- A graph of nodes with good connectivety.
- Expansion property. For any subset of contains more than βn nodes.
- For any $0 < \alpha, \beta < 1$, a constant degree (n, α, β) -expander exists.
- We use $(n, 2\varepsilon, 1 2\varepsilon)$ -expander denoted $G_{n\varepsilon}$

nodes, the neighbors $\Gamma(S)$

Solution 2: GA with $f \leq (1/2 - \varepsilon)n$

The degree of $G_{n,\varepsilon}$ is O(1)

 \rightarrow parties can forward $\Omega(n)$ -sized $C^{1}(b)$ with $O(n^{2})$ total communication

Solution 2: GA with $f \leq (1/2 - \varepsilon)n$

Suppose $C^2(b)$ is collected.

 \rightarrow At least $n - f \ge f + 2\epsilon n$ parties, i.e., 2ϵ honest parties, must have sent vote2 on the value , who must have propagated $C^1(b)$ to the neighbors in $G_{n,\varepsilon}$

 \rightarrow More than $(1 - 2\varepsilon)n \ge 2f$ parties, i.e., > f honest parties, must have received $C^{1}(b)$, who could not have sent vote2 on $b' \neq b$

 $\rightarrow C^2(b')$ cannot be collected.

Summary

- Solution 1 achieves f < n/2, but requires trusted key setup for threshold signatures.
- Solution 2 tolerate $f \leq (1/2 \varepsilon)n$, but requires only PKI.

authenticated (trusted setup)	f < n/2	$\Omega(n^2)$	$O(n^2)$ this work
authenticated (PKI)	$f < (1/2 - \varepsilon)n$	[Dolev-Resichuk]	$O(n^2)$ this work