Optimal Communication Complexity of Authenticated Byzantine Agreement

Atsuki Momose*†, Ling Ren \ddagger
Nagoya University
Intelligent Systems Laboratory, SECOM CO., LTD. \dagger
University of Illinois at Urbana-Champaign \ddagger

Byzantine Agreement (BA)

A set of parties $\left\{r_{1}, \ldots, r_{n}\right\}$ have input values $\left\{x_{1}, \ldots, x_{n}\right\}$, and agree on a single output

- At most f parties are faulty and behave arbitrarily-Byzantine fault.
- Consistency. Honest parties do not output different values.
- Termination. Every honest party eventually outputs a value.
- Validity. If every honest party has the same input value, every honest party outputs the value $y=b-U n a n i m i t y$.

Byzantine Agreement (BA)

Unauthenticated model.

- No cryptography, i.e., information-theoretic security.
- $f<n / 3$ is the best possible.

Authenticated model.

- Assume cryptography, e.g., digital signature with PKI.
- $f<n / 2$ is the best possible.

Communication Complexity

The maximum amount of bits transferred by all honest parties combined across all executions-worst-case communication cost.

- All parties multicast $O(1)$ messages, i.e., all-to-all communication
$\rightarrow O\left(n^{2}\right)$ communication
- All-to-all communication with $O(n)$ messages (e.g., a quorum of votes)
$\rightarrow O\left(n^{3}\right)$ communication

Communication Complexity of BA

Model	Fault-tolerace	Lower Bound	Upper Bound
unauthenticated	$f<n / 3$		$O\left(n^{2}\right)$ [Berman et al.]
$\Omega\left(n^{2}\right)$ authenticated (PKI)	$f<n / 2$	[Dolev-Resichuk]	$O\left(n^{3}\right)$ [Dolev-Strong]

Communication Complexity of BA

> 0 : any constant

Model	Fault-tolerace	Lower Bound	Upper Bound
unauthenticated	$f<n / 3$	$\begin{gathered} \Omega\left(n^{2}\right) \\ {[\text { Dolev-Resichuk] }} \end{gathered}$	$\begin{gathered} O\left(n^{2}\right) \\ {[\text { Berman et al.] }} \end{gathered}$
authenticated (PKI)	$f<n / 2$		$\begin{gathered} O\left(n^{3}\right) \\ {[\text { Dolev-Strong] }} \end{gathered}$
authenticated (trusted setup)	$f<n / 2$		$O\left(n^{2}\right)$ this work
authenticated (PKI)	$f<(1 / 2-\varepsilon) n$		$O\left(n^{2}\right)$ this work

Other Assumptions

Lockstep synchrony model.

- Every party runs at the same clock speed
\rightarrow a clock step is called round
- All message sent by honest parties are delivered by the next round

Adaptive corruption.

- An adversary can corrupt parties anytime in the protocol execution

Outline

1. Achieving BA from Graded Agreement (GA)

- Berman et al's protocol is a problem reduction from BA to GA.

2. Solving GA for $f \geq n / 3$

- Solution 1: GA with $f<n / 2$ and trusted setup.
- Solution 2: GA with $f \leq(1 / 2-\varepsilon) n$ and PKI.

Outline

1. Achieving BA from Graded Agreement (GA)

- Berman et al's protocol is a problem reduction from BA to GA.

2. Solving GA for $f \geq n / 3$

- Solution 1: GA with $f<n / 2$ and trusted setup.
- Solution 2: GA with $f \leq(1 / 2-\varepsilon) n$ and PKI.

Berman et al.

Recursively call the BAs in the two halves of parties.

Berman et al.

One of two halves preserves the $1 / 3$ fault fraction \rightarrow "correct" BA exec.

Berman et al.

One of two halves preserves the $1 / 3$ fault fraction \rightarrow "correct" BA exec.

Berman et al.

The tailored Universal Exchange pre-process (for $f<n / 3$) helps parties ignore the incorrect BA and follow the correct BA.

What the Universal Exchange achieves is the well-known problem called Graded Agreement.

Graded Agreement (GA)

A set of parties $\left\{r_{1}, \ldots, r_{n}\right\}$ have input values $\left\{x_{1}, \ldots, x_{n}\right\}$, and each party outputs a pair (y, g) of value and a grade bit $g \in\{0,1\}$

- Consistency. If an honest party outputs $(y, 1)$, every honest party outputs ($y,{ }^{*}$)
- Validity. If every honest party has the same input value $x_{i}, \ldots x_{j}=b$, every honest party outputs $(b, 1)$
- Termination. Every honest party eventually outputs a pair.
$B A$ in partition (i.e., $B A(P))$

1. GA determines the input of $B A$
2. If GA outputs grade 1, ignore BA's output.

Idea 1: An agreed upon value will not be changed.

If all honest parties already agree on a value at the beginning of each step, they do not change the value in the step.

Idea 1: An agreed upon value will not be changed.

If all honest parties already agree on a value at the beginning of each step, they do not change the value in the step.

Validity

If all honest parties input the same value, they all output the value.

```
Input }->GA(P


Step 1: Everyone outputs the agreed upon value


Step 2: Everyone outputs the agreed upon value

\section*{Idea 2: The "correct" step drives agreement}

All honest parties agree on a value at the end of the "correct" step.

Case 1: Someone outputs a value with grade 1 in GA.


Idea 2: The "correct" step drives agreement
All honest parties agree on a value at the end of the "correct" step.

Case 2: No one outputs grade 1 in GA.


\section*{Idea 2: The "correct" step drives agreement}

All honest parties agree on a value at the end of the "correct" step.

Case 2: No one outputs grade 1 in GA.


\section*{Consistency (case 1: step 1 is correct)}

The "correct" first step drives agreement, and the second step does not change the agreed upon value.

Step 1: Everyone agrees on a value


Step 2: Everyone outputs the agreed upon value


Step 1 is "correct"

\section*{Consistency (case 2: step 2 is correct)}

All honest parties agree on a value following the "correct" second step.

Step 2: Everyone agrees on a value


Step 2 is "correct"

\section*{Communication Complexity}

If the GA protocol costs \(O\left(n^{2}\right)\) communication, the total communication of the BA protocol will be \(O\left(n^{2}\right)\)

\author{
\(k\) - the depth of the recursion
}
\[
\left.C(n) \leq O\left(2^{k}+\sum_{i=0}^{k} 2^{i} \cdot \frac{n}{2^{i}}\right)^{2}\right)=O\left(n^{2}\right)
\]

The end of the recursion has
\(2^{k}\) partitions of \(O(1)\) parties

Depth recursion has \(2^{i}\) GAs with \(O\left(\left(\frac{n}{2^{i}}\right)^{2}\right)\) communication

\section*{Outline}
1. Achieving BA from GA
- Berman et al's protocol is a problem reduction from BA to GA.
2. Solving GA for \(f \geq n / 3\)
- Solution 1: GA with \(f<n / 2\) and trusted setup.
- Solution 2: GA with \(f \leq(1 / 2-\varepsilon) n\) and PKI.

Warmup: GA with \(f<n / 2\)
\(C^{1}(b): n-f(\) vote \(1, b)\)
\(C^{2}(b): n-f(\) vote2, \(b)\)
2. Forward \(C^{1}(b)\)
4. Forward \(C^{2}(b)\)

1. Send the input to all as (vote1, b)
3. If no \(C^{1}\left(b^{\prime}\right)\) for \(b^{\prime} \neq b\), send (vote2, \(b\) ) to all

If it receives \(C^{2}(b)\) output
(1) in round \(3 \Rightarrow g \leftarrow 1\)
(2) in round \(4 \Rightarrow g \leftarrow 0\)

\section*{Core idea: Eliminate conflicting majority vote2}

Two different majority vote2 \(C^{2}(b)\) and \(C^{2}\left(b^{\prime}\right)\) cannot be collected.


\section*{Consistency}


Everyone receives \(C^{2}(b)\)
\(\Rightarrow\) everyone outputs ( \(b,{ }^{*}\) )

\section*{The communication complexity is \(\Omega\left(n^{3}\right)\)}

Everyone forwarding \(n-f=\Omega(n)\) vote 2 costs \(\Omega\left(n^{3}\right)\) communication


\section*{Solution 1: Combining a set of votes}

Combining \(C^{1}(b)\) into a single signature using ( \(n-f, n\) )-threshold signature

2. Combine \(C^{1}(b)\) into a single signature, and forward it


Threshold signatures require
strong trusted key setup assumption

\section*{Solution 2: Expander}
( \(n, \alpha, \beta\) )-expander. \((0<\alpha, \beta<1)\)
- A graph of nodes with good connectivety.
- Expansion property. For any subset of nodes, the neighbors \(\Gamma(S)\) contains more than \(\beta n\) nodes.
- For any \(0<\alpha, \beta<1\), a constant degree ( \(n, \alpha, \beta\) )-expander exists.
- We use \((n, 2 \varepsilon, 1-2 \varepsilon)\)-expander denoted \(G_{n, \varepsilon}\)

\section*{Solution 2: GA with \(f \leq(1 / 2-\varepsilon) n\)}


The degree of \(G_{n, \varepsilon}\) is \(O(1)\)
\(\rightarrow\) parties can forward \(\Omega(n)\)-sized \(C^{1}(b)\) with \(O\left(n^{2}\right)\) total communication

\section*{Solution 2: GA with \(f \leq(1 / 2-\varepsilon) n\)}

Suppose \(C^{2}(b)\) is collected.
\(\rightarrow\) At least \(n-f \geq f+2 \epsilon n\) parties, i.e., \(2 \varepsilon\) honest parties, must have sent vote 2 on the value, who must have propagated \(C^{1}(b)\) to the neighbors in \(G_{n, \varepsilon}\)
\(\rightarrow\) More than \((1-2 \varepsilon) n \geq 2 f\) parties, i.e., \(>f\) honest parties, must have received \(C^{1}(b)\), who could not have sent vote2 on \(b^{\prime} \neq b\)
\(\rightarrow C^{2}\left(b^{\prime}\right)\) cannot be collected.

\section*{Summary}
- Solution 1 achieves \(f<n / 2\), but requires trusted key setup for threshold signatures.
- Solution 2 tolerate \(f \leq(1 / 2-\varepsilon) n\), but requires only PKI.
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
authenticated \\
(trusted setup)
\end{tabular} & \(f<n / 2\) & \multirow{3}{*}{\begin{tabular}{c} 
\\
\(\Omega\left(n^{2}\right)\)
\end{tabular}} & \begin{tabular}{c}
\(O\left(n^{2}\right)\) \\
this work
\end{tabular} \\
\hline \begin{tabular}{c} 
authenticated \\
(PKI)
\end{tabular} & \(f<(1 / 2-\varepsilon) n\) & [Dolev-Resichuk] & \begin{tabular}{c}
\(O\left(n^{2}\right)\) \\
this work
\end{tabular} \\
\hline
\end{tabular}```

